Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Predicating the Effector Proteins Secreted by Puccinia triticina Through Transcriptomic Analysis and Multiple Prediction Approaches.

Identifieur interne : 000076 ( Main/Exploration ); précédent : 000075; suivant : 000077

Predicating the Effector Proteins Secreted by Puccinia triticina Through Transcriptomic Analysis and Multiple Prediction Approaches.

Auteurs : Yue Zhang [République populaire de Chine] ; Jie Wei [République populaire de Chine] ; Yue Qi [République populaire de Chine] ; Jianyuan Li [République populaire de Chine] ; Raheela Amin [République populaire de Chine] ; Wenxiang Yang [République populaire de Chine] ; Daqun Liu [République populaire de Chine]

Source :

RBID : pubmed:33072007

Abstract

Wheat leaf rust caused by Puccinia triticina is one of the most common and serious diseases in wheat production. The constantly changing pathogens overcome the plant resistance to P. triticina. Plant pathogens secrete effector proteins that alter the structure of the host cell, interfere plant defenses, or modify the physiology of plant cells. Therefore, the identification of effector proteins is critical to reveal the pathogenic mechanism. We used SignalP v4.1, TargetP v1.1, TMHMM v2.0, and EffectorP v2.0 to screen the candidate effector proteins in P. triticina isolates - KHTT, JHKT, and THSN. As a result, a total of 635 candidate effector proteins were obtained. Structural analysis showed that effector proteins were small in size (50AA to 422AA) and of diverse sequences, and the conserved sequential elements or clear common elements were not involved, regardless of their secretion from the pathogen to the host. There were 427 candidate effector proteins that contain more than or equal to 4 cysteine residues, and 339 candidate effector proteins contained the known motifs. Sixteen families, 9 domains, and 53 other known functional types were found in 186 candidate effector proteins using the Pfam search. Three novel motifs were found by MEME. Heterogeneous expression system was performed to verify the functions of 30 candidate effectors by inhibiting the programmed cell death (PCD) induced by BAX (the mouse-apoptotic gene elicitor) on Nicotiana benthamiana. Hypersensitive response (HR) can be induced by the six effectors in the wheat leaf rust resistance near isogenic lines, and this would be shown by the method of transient expression through Agrobacterium tumefaciens infiltration. The quantitative reverse transcription PCR (qRT-PCR) analysis of 14 candidate effector proteins secreted after P. triticina inoculation showed that the tested effectors displayed different expression patterns in different stages, suggesting that they may be involved in the wheat-P. triticina interaction. The results showed that the prediction of P. triticina effector proteins based on transcriptomic analysis and multiple bioinformatics software is effective and more accurate, laying the foundation of revealing the pathogenic mechanism of Pt and controlling disease.

DOI: 10.3389/fmicb.2020.538032
PubMed: 33072007
PubMed Central: PMC7536266


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Predicating the Effector Proteins Secreted by
<i>Puccinia triticina</i>
Through Transcriptomic Analysis and Multiple Prediction Approaches.</title>
<author>
<name sortKey="Zhang, Yue" sort="Zhang, Yue" uniqKey="Zhang Y" first="Yue" last="Zhang">Yue Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding</wicri:regionArea>
<wicri:noRegion>Baoding</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wei, Jie" sort="Wei, Jie" uniqKey="Wei J" first="Jie" last="Wei">Jie Wei</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding</wicri:regionArea>
<wicri:noRegion>Baoding</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qi, Yue" sort="Qi, Yue" uniqKey="Qi Y" first="Yue" last="Qi">Yue Qi</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding</wicri:regionArea>
<wicri:noRegion>Baoding</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Jianyuan" sort="Li, Jianyuan" uniqKey="Li J" first="Jianyuan" last="Li">Jianyuan Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding</wicri:regionArea>
<wicri:noRegion>Baoding</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>College of Biological Sciences and Engineering, Hebei Xingtai College, Xingtai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Biological Sciences and Engineering, Hebei Xingtai College, Xingtai</wicri:regionArea>
<wicri:noRegion>Xingtai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Amin, Raheela" sort="Amin, Raheela" uniqKey="Amin R" first="Raheela" last="Amin">Raheela Amin</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding</wicri:regionArea>
<wicri:noRegion>Baoding</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Wenxiang" sort="Yang, Wenxiang" uniqKey="Yang W" first="Wenxiang" last="Yang">Wenxiang Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding</wicri:regionArea>
<wicri:noRegion>Baoding</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Daqun" sort="Liu, Daqun" uniqKey="Liu D" first="Daqun" last="Liu">Daqun Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Graduate School of Chinese Academy of Agricultural Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33072007</idno>
<idno type="pmid">33072007</idno>
<idno type="doi">10.3389/fmicb.2020.538032</idno>
<idno type="pmc">PMC7536266</idno>
<idno type="wicri:Area/Main/Corpus">000058</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000058</idno>
<idno type="wicri:Area/Main/Curation">000058</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000058</idno>
<idno type="wicri:Area/Main/Exploration">000058</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Predicating the Effector Proteins Secreted by
<i>Puccinia triticina</i>
Through Transcriptomic Analysis and Multiple Prediction Approaches.</title>
<author>
<name sortKey="Zhang, Yue" sort="Zhang, Yue" uniqKey="Zhang Y" first="Yue" last="Zhang">Yue Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding</wicri:regionArea>
<wicri:noRegion>Baoding</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wei, Jie" sort="Wei, Jie" uniqKey="Wei J" first="Jie" last="Wei">Jie Wei</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding</wicri:regionArea>
<wicri:noRegion>Baoding</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qi, Yue" sort="Qi, Yue" uniqKey="Qi Y" first="Yue" last="Qi">Yue Qi</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding</wicri:regionArea>
<wicri:noRegion>Baoding</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Jianyuan" sort="Li, Jianyuan" uniqKey="Li J" first="Jianyuan" last="Li">Jianyuan Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding</wicri:regionArea>
<wicri:noRegion>Baoding</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>College of Biological Sciences and Engineering, Hebei Xingtai College, Xingtai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Biological Sciences and Engineering, Hebei Xingtai College, Xingtai</wicri:regionArea>
<wicri:noRegion>Xingtai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Amin, Raheela" sort="Amin, Raheela" uniqKey="Amin R" first="Raheela" last="Amin">Raheela Amin</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding</wicri:regionArea>
<wicri:noRegion>Baoding</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Wenxiang" sort="Yang, Wenxiang" uniqKey="Yang W" first="Wenxiang" last="Yang">Wenxiang Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding</wicri:regionArea>
<wicri:noRegion>Baoding</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Daqun" sort="Liu, Daqun" uniqKey="Liu D" first="Daqun" last="Liu">Daqun Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Graduate School of Chinese Academy of Agricultural Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wheat leaf rust caused by
<i>Puccinia triticina</i>
is one of the most common and serious diseases in wheat production. The constantly changing pathogens overcome the plant resistance to
<i>P. triticina</i>
. Plant pathogens secrete effector proteins that alter the structure of the host cell, interfere plant defenses, or modify the physiology of plant cells. Therefore, the identification of effector proteins is critical to reveal the pathogenic mechanism. We used SignalP v4.1, TargetP v1.1, TMHMM v2.0, and EffectorP v2.0 to screen the candidate effector proteins in
<i>P. triticina</i>
isolates - KHTT, JHKT, and THSN. As a result, a total of 635 candidate effector proteins were obtained. Structural analysis showed that effector proteins were small in size (50AA to 422AA) and of diverse sequences, and the conserved sequential elements or clear common elements were not involved, regardless of their secretion from the pathogen to the host. There were 427 candidate effector proteins that contain more than or equal to 4 cysteine residues, and 339 candidate effector proteins contained the known motifs. Sixteen families, 9 domains, and 53 other known functional types were found in 186 candidate effector proteins using the Pfam search. Three novel motifs were found by MEME. Heterogeneous expression system was performed to verify the functions of 30 candidate effectors by inhibiting the programmed cell death (PCD) induced by BAX (the mouse-apoptotic gene elicitor) on
<i>Nicotiana benthamiana</i>
. Hypersensitive response (HR) can be induced by the six effectors in the wheat leaf rust resistance near isogenic lines, and this would be shown by the method of transient expression through
<i>Agrobacterium tumefaciens</i>
infiltration. The quantitative reverse transcription PCR (qRT-PCR) analysis of 14 candidate effector proteins secreted after
<i>P. triticina</i>
inoculation showed that the tested effectors displayed different expression patterns in different stages, suggesting that they may be involved in the wheat-
<i>P. triticina</i>
interaction. The results showed that the prediction of
<i>P. triticina</i>
effector proteins based on transcriptomic analysis and multiple bioinformatics software is effective and more accurate, laying the foundation of revealing the pathogenic mechanism of
<i>Pt</i>
and controlling disease.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33072007</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Predicating the Effector Proteins Secreted by
<i>Puccinia triticina</i>
Through Transcriptomic Analysis and Multiple Prediction Approaches.</ArticleTitle>
<Pagination>
<MedlinePgn>538032</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2020.538032</ELocationID>
<Abstract>
<AbstractText>Wheat leaf rust caused by
<i>Puccinia triticina</i>
is one of the most common and serious diseases in wheat production. The constantly changing pathogens overcome the plant resistance to
<i>P. triticina</i>
. Plant pathogens secrete effector proteins that alter the structure of the host cell, interfere plant defenses, or modify the physiology of plant cells. Therefore, the identification of effector proteins is critical to reveal the pathogenic mechanism. We used SignalP v4.1, TargetP v1.1, TMHMM v2.0, and EffectorP v2.0 to screen the candidate effector proteins in
<i>P. triticina</i>
isolates - KHTT, JHKT, and THSN. As a result, a total of 635 candidate effector proteins were obtained. Structural analysis showed that effector proteins were small in size (50AA to 422AA) and of diverse sequences, and the conserved sequential elements or clear common elements were not involved, regardless of their secretion from the pathogen to the host. There were 427 candidate effector proteins that contain more than or equal to 4 cysteine residues, and 339 candidate effector proteins contained the known motifs. Sixteen families, 9 domains, and 53 other known functional types were found in 186 candidate effector proteins using the Pfam search. Three novel motifs were found by MEME. Heterogeneous expression system was performed to verify the functions of 30 candidate effectors by inhibiting the programmed cell death (PCD) induced by BAX (the mouse-apoptotic gene elicitor) on
<i>Nicotiana benthamiana</i>
. Hypersensitive response (HR) can be induced by the six effectors in the wheat leaf rust resistance near isogenic lines, and this would be shown by the method of transient expression through
<i>Agrobacterium tumefaciens</i>
infiltration. The quantitative reverse transcription PCR (qRT-PCR) analysis of 14 candidate effector proteins secreted after
<i>P. triticina</i>
inoculation showed that the tested effectors displayed different expression patterns in different stages, suggesting that they may be involved in the wheat-
<i>P. triticina</i>
interaction. The results showed that the prediction of
<i>P. triticina</i>
effector proteins based on transcriptomic analysis and multiple bioinformatics software is effective and more accurate, laying the foundation of revealing the pathogenic mechanism of
<i>Pt</i>
and controlling disease.</AbstractText>
<CopyrightInformation>Copyright © 2020 Zhang, Wei, Qi, Li, Amin, Yang and Liu.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yue</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qi</LastName>
<ForeName>Yue</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jianyuan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Biological Sciences and Engineering, Hebei Xingtai College, Xingtai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Amin</LastName>
<ForeName>Raheela</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Wenxiang</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Daqun</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">BAX</Keyword>
<Keyword MajorTopicYN="N">Puccinia triticina</Keyword>
<Keyword MajorTopicYN="N">RNA sequencing</Keyword>
<Keyword MajorTopicYN="N">effector proteins</Keyword>
<Keyword MajorTopicYN="N">qRT-PCR</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>5</Hour>
<Minute>55</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33072007</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2020.538032</ArticleId>
<ArticleId IdType="pmc">PMC7536266</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Front Plant Sci. 2016 Feb 12;7:126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26904083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Jul 21;300(4):1005-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10891285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Jul;17(7):646-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11448883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2015 Nov 4;63(43):9609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26450100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Jul 16;340(4):783-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15223320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Jul;27(7):2057-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26163574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Apr 22;14:270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23607900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 May 28;11(5):e1004806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26020524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2019 Jul 5;294(27):10471-10489</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31118223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Mar;16(3):755-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:513-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25923844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Apr;210(2):743-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26680733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Aug 27;274(35):24959-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10455173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 1993;34:147-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8452092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2000;34:165-186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11092825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2019 Jul;250(1):1-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30980247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Dec 22;358(6370):1607-1610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29269475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jan;18(1):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16326930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Int Conf Intell Syst Mol Biol. 1998;6:175-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9783223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2007 May;9(5):1223-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17217426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jun;17(6):1839-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15894715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Sep;19(9):2094-2110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29569316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yi Chuan Xue Bao. 2005 Dec;32(12):1319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16459662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jan 13;4:520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24454317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):793-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012 Jan;8(1):e1002400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22253591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Dec 22;358(6370):1604-1606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29269474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2018 Jan;31(1):22-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29023190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2013 Sep 15;527(1):154-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23751305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 May 20;11:317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20487537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2017 Feb 9;7(2):361-376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27913634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jun 21;288(25):18058-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23632075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7956-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10393929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Feb 14;272(7):3924-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9020095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology (Reading). 2004 Jul;150(Pt 7):2029-2035</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15256547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Apr;17(4):394-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15077672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2000 Jun;64(2):316-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10839819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2005 Apr;47(4):244-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15724214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2013 Apr 17;4:81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23616783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2015 Oct;28(10):1082-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26057389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Aug;7(8):1221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7549480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2012 Nov 2;423(4):600-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22867705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2017;1611:59-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28451972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:41-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16448329</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Yue" sort="Zhang, Yue" uniqKey="Zhang Y" first="Yue" last="Zhang">Yue Zhang</name>
</noRegion>
<name sortKey="Amin, Raheela" sort="Amin, Raheela" uniqKey="Amin R" first="Raheela" last="Amin">Raheela Amin</name>
<name sortKey="Li, Jianyuan" sort="Li, Jianyuan" uniqKey="Li J" first="Jianyuan" last="Li">Jianyuan Li</name>
<name sortKey="Li, Jianyuan" sort="Li, Jianyuan" uniqKey="Li J" first="Jianyuan" last="Li">Jianyuan Li</name>
<name sortKey="Liu, Daqun" sort="Liu, Daqun" uniqKey="Liu D" first="Daqun" last="Liu">Daqun Liu</name>
<name sortKey="Qi, Yue" sort="Qi, Yue" uniqKey="Qi Y" first="Yue" last="Qi">Yue Qi</name>
<name sortKey="Wei, Jie" sort="Wei, Jie" uniqKey="Wei J" first="Jie" last="Wei">Jie Wei</name>
<name sortKey="Yang, Wenxiang" sort="Yang, Wenxiang" uniqKey="Yang W" first="Wenxiang" last="Yang">Wenxiang Yang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000076 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000076 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33072007
   |texte=   Predicating the Effector Proteins Secreted by Puccinia triticina Through Transcriptomic Analysis and Multiple Prediction Approaches.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33072007" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020